CS103 Syllabus

This handout contains the tentative syllabus for CS103. Depending on how quickly we're able to cover various topics, we may proceed more quickly or more slowly than the syllabus indicates.

The readings from Sipser can be taken from either the second or third edition of the book.

Part One: Mathematical Formalisms							
	Date	Topics	Readings	Assignments			
м	Sep 24	Can computers solve all problems? Set Theory The Limits of Computing	Course Notes Ch. 1				
W	Sep 26	<i>How do we prove results with certainty?</i> Direct Proofs	Course Notes Ch. 2				
F	Sep 28	How do we prove something without directly proving it? Proof by Contradiction Proof by Contrapositive	Course Notes Ch. 2	PS1 Out			
м	Oct 1	How do we reason about discrete structures? Mathematical Induction	Course Notes Ch. 3	PS1 Checkpoint Due			
W	Oct 3	How else might we reason about discrete structures? Strong Induction The Well-Ordering Principle	Course Notes Ch. 3				
F	Oct 5	How can we model connections between objects? Graphs Relations	Course Notes Ch. 4, Ch. 5	PS1 Due PS2 Out			
м	Oct 8	How do we reason about the sizes of infinite sets? Functions Cantor's Theorem Revisited	Handouts	PS2 Checkpoint Due			
W	Oct 10	Can we prove results simply by counting? The Pigeonhole Principle Algorithmic Lower Bounds	Handouts				
F	Oct 12	<i>How do we symbolically codify logic?</i> Propositional Logic	Rosen 1.1- 1.2	PS2 Due PS3 Out			
м	Oct 15	What are the laws of mathematical reasoning? First-Order Logic	Rosen 1.3- 1.5	PS3 Checkpoint Due			
W	Oct 17	How do computers prove simple theorems? SAT Solving Propositional Normal Forms					

Part Two: Computability Theory							
	Date	Topics	Readings	Assignments			
F	Oct 19	How do we mathematically model computers? Introduction to Computability Theory DFAs	Sipser 1.1	PS3 Due, PS4 Out			
м	Oct 22	Does computation have to be deterministic? NFAs Equivalence of DFAs and NFAs	Sipser 1.2	PS4 Checkpoint Due			
W	Oct 24	Can we assemble programs out of smaller programs? Regular Expressions Equivalence of Regular Expressions and NFAs	Sipser 1.3				
F	Oct 26	Can computers with finite memory solve all problems? Non-Regular Languages The Pumping Lemma for Regular Languages	Sipser 1.4	PS4 Due, PS5 Out			
м	Oct 29	How are natural languages and formal languages alike? Context-Free Grammars Context-Free Languages	Sipser 2.1				
		Midterm Exam: 7PM – 10PM, Location TBA					
W	Oct 31	What might computers with unbounded memory look like? Pushdown Automata Deterministic Context-Free Languages	Sipser 2.2				
F	Nov 2	How powerful is stack-based memory? What comes next? The Pumping Lemma for Context-Free Languages Turing Machines	Sipser 2.3	PS5 Due, PS6 Out			
м	Nov 5	How powerful is the Turing machine? A Programming Language for Turing Machines The Church-Turing Thesis	Sipser 3.1				
W	Nov 7	Can machines perform computations on other machines? The Universal Turing Machine Nondeterministic Turing Machines	Sipser 3.2– 3.3				
F	Nov 9	Why are threads and recursion possible? A Theoretical Basis for Systems Programming		PS6 Due, PS7 Out			
м	Nov 12	What problems cannot be solved? An Unrecognizable Language An Undecidable Language	Sipser 4.2	PS7 Checkpoint Due			
W	Nov 14	How do we learn about one problem by studying another? Mapping Reductions	Sipser 5.1				
F	Nov 16	What is the maximum extent of computing power? More Mapping Reductions co- RE Languages	Sipser 5.3	PS7 Due, PS8 Out			
	Thanksgiving Break November 19 – 23 No Class						

	Part Three: Complexity Theory						
	Date	Topics	Readings	Assignments			
м	Nov 26	What problems can be solved efficiently? Introduction to Complexity Theory P	Sipser 7.1– 7.3	PS8 Checkpoint Due			
W	Nov 28	What problems can be verified efficiently? NP P = NP	Sipser 7.4				
F	Nov 30	What are the hardest problems to verify efficiently? NP-Completeness The Cook-Levin Theorem	Sipser 7.5	PS8 Due, PS9 Out			
м	Dec 3	<i>How can you solve one problem with a solver for another?</i> More NP- Completeness					
W	Dec 5	Are all hard problems created equal? Approximation Algorithms NP-Completeness and Cryptography					
F	Dec 7	How does everything fit together? The Big Picture		PS9 Due			
W	Dec 12	Final Exam: 12:15 – 3:15PM , Lo	ocation TBA				